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Abstract. Reversible 'liquid-vapour' like transitions and irreversible coagulation incharge- 
stabilized colloidal dispersions are studied using a one-component macroparticle framework 
with a conventional DLvO interaction potential. The spinodal and coexistence curves are 
calculated as a function of salt concentration using thermodynamic perturbation t h e o r y  
specifically the random-phase approximation using Rrstly hard spheres and then sticky hard 
spheres as reference systems. With the hard spheres, the hardcore location varies between 
the first and second zero of the OLVO potential. In the case of the sticky hard spheres. the 
hard core is located at the first zero of the DLVO potential; this models the deep narrow 
primary minimum of this potential. The irreversible coagulation is distinguished from the 
reversible transition by the Ratteningoithemexistencecurve at avalueofsaltconcentration 
above the range over which the 'liquid-vapour' transition takes place. 

1. Introduction 

Grimson (1983a. b) and Victor and Hansen (vH) (1984,1985) have presented plausible 
statistical mechanics calculations of the 'liquid-vapour' phase separation in mono- 
disperse charge-stabilized dispersions of colloidal particles, whose possible existence- 
under favourable conditions-was suggested by Long et at (1972). 

In the traditional one-component description of these systems, the phase behaviour 
of themacroparticles resultsfrom the interplay between the screened Coulomb repulsion 
and the van der Waals attractive forces which feature in the DLVO potential energy q ( r )  
of interaction between the macroparticles (however, see Canessa et nl(1988)). Besides 
the very deep primary minimum which leads to irreversible coagulation of the macro- 
particles, the interplay between the two forces may give rise to a secondary minimum 
which is responsible for the reversible flocculation akin to the liquid-vapour equilibrium 
mentioned above. 

Both set of papers referred to above make use of the thermodynamic perturbation 
theory of liquids in their work (see, e.g., Hansen and McDonald 1986). Grimson uses 
the random-phase approximation (RPA) with a hard sphere (HS) reference system in his 
first paper (Grimson 1983a) and the one-component plasma (OCP) as the reference 
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system in hissecond paper (Grimson 1983b). VH use the more accurate Weeks, Chandler 
and Andersen (WCA) theory with a HS reference system together with the high-tem- 
perature approximation. However, the main differences between the two approaches 
are quantitative rather than qualitative when-as indicated by xi-the values of the 
parameters used in the calculations correspond to the system of interest. 

VH arbitrarily classify the dispersion as thermodynamically stable when the Coulomb 
barrier in q ( r )  is larger than a certain value which issubstantially higher than the thermal 
energy kBT that must be later correlated with experiment. 

In this work we discuss whether by the introduction of the deep minimum in the 
model potential-the sticky hard sphere (sHs)-criteria for irreversible change can be 
formulated. This would indicate the suitability of the arbitrary criteria introduced by VH 
to separate the stable system from one which has undergone irreversible coagulation. 

In order to analyse the problem of stability within the one-component description of 
the colloidal dispersion, one needs to study the competition between the Coulomb 
barrier and the deep narrow primary minimum in the DLvO potential. 

The importance of the role played by the first minimum of the DLVO potential in 
obtaining a rich variety of phase behaviour has been recognized in the recent paper by 
Kendrick er a1 (1988). However, in their work, an approximate form was used for the 
vans der Waals attraction which gives a primary minimum that differs from that of the 
conventional DLVO potential in being of finite depth and greater width. 

More recently Hemmer and Stell (1990) have studied the effect of strong short-range 
attractions on the phase transition in a one-dimensional fluid by using a model potential 
which contains both a long-range and short-range attractive part. 

For the present studies a thermodynamic perturbation theory is employed, the 
calculations being carried out within the RPA, with a SHS reference system plus a DLVO 
perturbation potential. As pointed out by vH, using the RPA results in only qualitative 
accuracy. 

The s ~ s  was first introduced by Baxter (1968), within the PercuoYevick (PY) approxi- 
mation, as an exactly soluble pathological model. Its main virtue appeared to be that it 
was the simplest non-trivial model-within the pair distribution function theories of 
liquids-that exhibits a liquid-vapour transition and a critical point (for a recent discus- 
sion see Juanos i Timoneda and Haymet (1989)) as well as, within the framework of 
density functional theory, a freezing transition (Smithline and Haymet 1985). The 
interest in this system has recently led to careful Monte Carlo studies by Seaton and 
Gldndt (I986,1987a, b) and by Kranendonk and Frenkel(1988). 

The suitability of the SHS as a reference system to study colloidal dispersions has been 
the subject of careful scrutiny in recent work by Regnaut and Ravey (1989). However, 
to our knowledge, this is the first work actually to make use of the SHS in calculations 
based on thermodynamic perturbation theory. 

Insection2theeffectsof theseparation oftheo~vopotentialbetween a ~sreference 
system and the potential tail at pointsother than the maximum of the Coulomb barrier 
are discussed. These calculations indicate the role played by the Coulomb barrier. In 
section 3 the SHS reference system is now placed at the first zero of the DLVO potential in 
order to study the effects due to the presence of the primary minimum. The SHS is 
basically characterized by two parameters: the packing fraction q ,  and the ‘stickiness 
parameter’ z-’. The latter parameter, or more precisely z, is related in some way to the 
temperature Tof the system under study; the different choices for this relationship are 
discussed below and the most appropriate choice for the present calculationsis indicated. 

M J Crimson et a1 
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Figure 1. DLVO potential for two values of K at 
7" =0.067:curvea. lM1.26;cuweb,221.01. 

Figure 2. RPA with a HS reference system. Plot of 
theminimumcriticalparameter K,,,.(see text) as 
afunctionofthecut-offdistancexoat T* = 0.111. 

2. The DLVO potential and the RPA with a HS reference system 

As indicated in the preceding section the potential energy of interaction used between 
two colloidal particles is the DLVO potential which, following VH, is written 

qw = Q)es(r) + Q)vw(r) 

q,(r) = Juo exp[-kD(r- uo)J/r = J e x p [ - K ( x  - l)]/x 

(2.1) 

(2.2) 

where the electrostatic repulsion qsr(r)  is approximately given by 

where U, is the effective diameter of the macroions, J = nso&,uo& is the electrostatic 
coupling constant, E = so&, denotes the dielectric constant of the solvent, ly0 is the 
surface potential of the colloidal particles and kD is the inverse of the Debye screening 
length. Hence thereducedlengthx = r/uo, and reduced Debye wavenumber K = kouo. 
In all the calculations reported here the value uo = 0.6 pm is used. 

The van der Waals contribution to q ( r )  may be written as 

P"W(4 = - ( A / w W  (2.3) 

h(x) = l/(xz - 1) + l/xz + 2 In(1 - l/xz). (2.4) 

whereA is the Hamaker constant, and 

The thermodynamic perturbation theory usedin this work is the RPAfOr the Omstein- 

The RPA consists of writing 
Zemike direct correlation function c(r) of the monodisperse colloidal system. 

E(q) = E o ( q )  - @(4) (2.5) 

wheret(q)istheFouriertransform(m)ofc(r)andP = (kB7'-'. Inequation(2.5),Eo(q) 
denotes the m of the direct correlation function co(r) of the reference system, and @(q) 
the m of the potential given by equation (2.1) for values x > xo. Here xo denotes the 
position of the cut-off for the reference system following the WCA division of the potential 
as discussed by Grimson (1983a). 

In all calculations the reduced value T, = J/k, = 60000 K is used, the regime studied 
by VH, and the reduced temperature F = T,/T, where TA = A/kB. In figure 1, q(x) is 
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shown for two values of K at TI = 0.067. It should be noted that in the calculations the 
change in shape of q(x) with K must be taken into account. In the examples chosen for 
figure 1, note that there is not much change in the value of the first zero of ~ ( x ) ,  say x , ,  
whereas the position of the second zero, say x2 ,  changes substantially with K. 

As stated in section 1, the first set of calculations were carried out using a HS reference 
system. For the calculations presented here, only the value of E(q) in its long-wavelength 
limit S ( q  = 0) is required. For fu(0) = tHHs(0) the closed algebraic form is provided by the 
PY approximation (Grimson 1983a). 

M J Grimon et a1 

The spinodal curve in the RPA is given by 

1 - pt (0 )  = 0 (2.6) 

and the critical point 

(a/ap)[l - PE(O)1 = 0 (2.7) 

where p denotes the bulk number density of the dispersed phase for different values of 
the cut-off positions xu, such that x ,  <xu < x2 ,  and different temperatures. 

Within the RPA, and using the PY approximation, equation (2.6) reads (Grimson 
1983a) 

(1  + 2q)'/(1 - 17)' + (24p/x;~3,)q@(O; K )  = 0. 

2(1 + 2q)/(1 - 5q)(1 - q ) 3  + (I2p/x;Uij)@(O;K) = 0. 

(2.8) 

(2.9) 

From equation (2.7), one obtains 

Fromequations (2.8) and (2.9) thecritical packing fraction qc = 0.1287 (Grimson 1983a) 
irrespective of the value of TI is obtained. Rewriting equation (2.8) as 

TI = -24@(0; K)q(l - ~ ) ' / x J u ~ A ( ~  + 2 ~ ) '  (2.10) 

with the valueA = 6.07 x 10'ZUJfor the Hamaker constant is used in all the calculations 
below. 

Foreachvalueofx,and T*,usingequation(2.10), thespinodalcurveforthecharged 
colloidal dispersion is calculated as a function of electrolyte concentration as measured 
by the reduced inverse Debye screening length K and the packing fraction q .  At each 
TI, equation (2.9) yields a critical value for K, say K,, at qc. 

Once the spinodal curve is obtained, the coexistence curve may be evaluated by the 
usual procedure of requiring, at the temperature P, mechanical equilibrium (i.e. 
equality of the osmotic pressures of the two phases) and chemical equilibrium (i.e. 
equality of the chemical potentials) as discussed by Grimson (1983a). This curve bounds 
the two-phase region: one vapour like and the other liquid like. 

For each value of T the value of xu which leads to the minimum value of K,, say 
K,,,,, is calculated and also that value which leads to the maximum value of Kc, say 
K,,,,. The results are summarized in table 1. It can be seen that, as a rule, K,,.,occurs 
at a value very near the first zero, x1 of the DLVO potential, whereas Kcmi, occurs just 
before the value of xo  reaches the second zero, x2. 

In figure 2, K,,,, is plotted as a function of cut-off distancexu for the value of T = 
0.111. It is seen that K,,,, remains constant over a wide range of values of xu. In fact, 
for this value of K,,,,, and the parametrization used in our calculations, the height of 
the Coulomb barrier has already taken on negative values. This means that at this value 
of K,,,, ( ~ 3 5 0 )  the system energetically prefers to coagulate irreversibly. 
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Table 1. Critical parameters K,,.and KCm(" as functionsofthe reduced temperature P, and 
the cut-off position xo at which these are found. x ,  and x2 denote the fin1 and second zem, 
respectively, of the DLVO potential. 

r K~,, 

0.056 206.55 
0.061 213.52 
0.067 221.01 
0.072 229.09 
0.078 237.83 
0.083 247.33 
0.089 251.69 
0.111 

X.",.. *I Kmin ~ o d n  

1.0020 1.0020 129.70 1.0240 
1.0020 - 144.51 1.0205 
1.0020 - 160.26 1.0170 
1.0020 - 176.98 1.0145 
1.0020 - 19472 1.0120 
1.0020 - 213.43 1.0105 
1.0020 - 232.98 1.0085 
Neither maximum nor minimum, just level 

X 2  

1.0250 

1.0180 

1.025 

- 
- 
- 
- 

100 
6 7 8 9 1 0  

rvio' 

Flgure3. RPA with a HS reference system, Plot of 
the maximum and minimmm critical parameters, 
K,.i. ( x )  and Kemnx (0) (see text), as functions of 
the reduced temperature P. 

II 

Figure 4. RPA with a HS reference system. Behav- 
iour of the spinodal curve for large values of K at 
T" = 0.067andtwovaluesofthecut-offdistance: 
curve A denotes x o  = 1.00225; curve B denotes 
x o =  1.oW5. 

In figure 3, Kcmax and Kcmi" appear to converge to the same value (=285). At this 
value, within the limitations imposed by the approximation of ignoring the strong 
attractive part of the DLVO potential because of the cut-off at xo, the crossover to 
irreversible coagulation has occurred as the height of the Coulomb barrier is zero. 

Finally, it is also worth noting that, at any temperature, as Kis increased, the spinodal 
line tends to straighten up at the ends. This shown in figure 4 for two values of xo at r* = 
0.067. This behaviour is associated with phase instability as, for these values of K ,  the 
potential barrier in the DLVO potential drops below zero. 
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3. RPA results with a SKS reference system 

The potential defining a SHS reference system is given by 

M J Grimon et a1 

r < d  i: r > r l  
& S H S ( r )  = In[12a(rl - d)/rll d < r < r ,  (3.1) 

in the limit d d  r l ,  with r1 denoting the position of the first zero in the DLVO potential. 
SHSS are assumed to mimic the hard core and the deep narrow primary minimum of the 
DLVO colloids. 

Henceforth we shaU follow Barboy's (1974) (see also Barboy and Baer (1975)) 
notation of the SHS solution in the PY approximation. Now Co(0) = ESHS(0) and 

I - P E S H S ( 0 )  = (1 + 2q - Aq)Z/(l - q)'. 

qA2/2(1 - q)' + [6q/(1 - 7) + t]A + (1 + q/2)/(1 - q) = 0 

( 3 4  

(3.3) 

The dimensionless parameter A is related to t and q by 

where only one of the roots leads to a physical solution, namely that for which the values 
of A satisfy the condition A < 2 + q-'. 

Now the spinodal curve from equation (2.6) reads 

(1 + 2q - Aq)'/(l - q)' + (24p/~:0:)@(0; K) = 0 (3.4) 

(3.5) 

(3.6) 

and the critical point from equation (2.7) isgiven by 

(1 + 217 - Aq)(2 - ,I - A'q)/(1 - 57)(1 - q ) 3  + (12b/~:0:)@(0; K )  = 0 

with A' = ah/at). From (3.4) and (3.5) the following equation is obtained: 

(2 - A  - A'q)/(l + 2q - AV) = (1 - 5 q ) / 2 ~ ( 1  - 11) 
The equation equivalent to equation (2.10) for HS, is obtained from (3.5) and now 

reads 

T* = -24q@(O; K)(1 - q)'//x:uaA(l + 2q -AV)' (3.7) 
but now depends on 5 .  

As has been done with the HS reference system, the spinodal curve and then the 
coexistence curve could be calculated by, say, fixing T* and plotting K as a function of 
q. However, now T" also depends on z and the understanding of the relationship 
between the stickiness parameter t - l  and the temperature is crucial to the use of the SHS 
as a reference system. In a seminal paper on the SHS (Baxter 1968), t is introduced as a 
'dimensionlessmeasure of the temperatureof thesystem', but it isin the paperof Barboy 
(1974) that the relationship between t and Tis discussed in terms akin to that used in 
this work. However, other avenues are possible for the choice of t but one has to be 
careful with the choice owing to the basic instability of the model itself. One method is 
to use the HS reference system (i.e. A = 0) to find K ,  and qc = 0.1287. From equation 
(3.7), one can now solve for t a t  fixed Tand then obtain the spinodal curve. However, 
this is incorrect as qc is not the critical value of the SHS system. 

The critical SHS values (Barboy 1974) qc = ( 3 V 5  - 4)/2 and 5, = 2 - f i c o u l d  also 
be used. However, this leads to an obviously unsuitable coexistence curve. 
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FigureS. RPA With aSHs referencesystem, showing 
spinodal(----) andcoexistence (-)curvesfor 
T = 0.067 and I = 2.8. Here r is regarded as a 
free parameter. 

Figure 6. Same as in figure 5,  but for z = 0.8. 

Another choice is to take T as a free parameter to evaluate the spinodal and coexist- 
ence curves. Whilst the results obtained in figure 5 look interesting, in figure 6 the 
behaviour is again unsuitable. 

The approach actually opted for is based on the important observation made by 
Barboy(1974). Henotedthat thesecondvirialcoefficientofthes~s,plottedasafunction 
of T / T ~ ,  and that for the Lennard-Jones potential, plotted as a function of T/T, (with T, 
denoting the critical temperature), are very close over a wide range of temperatures. 
This result suggests firstly that T is proportional to T and secondly that the second virial 
coefficient may be used as a convenient procedure to quantify this proportionality. In 
our case and for ease of computation it is assumed 

&(SHS) = &(DLVO) = B,(Sutherland) 

i.e. the DLVO potential is replaced for the suitably parametrized Sutherland potential 
(Hirschfeldererall954) in the calculationof the secondvirialcoefficient. This procedure 
quantifies the proportionality between T and Twhich, to order T*-2, reads 

T = 5 4 F [ 1 +  (1/63)T*-']-1. (3.8) 

With these results it is possible to evaluate the spinodal and coexistence curves. The 
results obtained for F = 0.067 are shown in figure 7 with critical values qc = 0.121 and 
K, = 190.33. 

Infigure7, note the Aatteningofthe coexistencecurvearound the criticalpoint. This 
is also seen in figure 5. Moreover, there are already signs of the onset of this behaviour 
in figure 4. 

VH introduced irreversible coagulation to their model by imposing a phenom- 
enological constraint familiar from the DLVO theory of colloid stability. They assume 
that irreversible coagulation occurs when the height of the primary maximum in the 
DLVO interaction potential drops below a value that must be later correlated with 
experimental studies. This leads to a horizontal line partitioning off a coagulated or 
unstable region of the phase diagram. The flattened region of the coexistence curve 
obtained here bears a strong resemblance to the phenomenological l i e  of VH. 
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Figurr7.nPAwith asHSreferencesysfemshowing 
spinodal (----)and mexistence (-)curvesfor 
P = 0.067. Here T is obtained by equating the 
second virial coefficient of the SHS system to that 
obtained from the Sutherland potential (equation 
(3.8)). 

4. Discussion 

We have studied in this work several aspects related to the phase stability of charge- 
stabilized colloidal dispersions. First, we have considered the changes which take place 
as the screened Coulomb bamer is allowed to reveal the portion of the curve that 
descends toward the first zero in the ~ ~ v o p o t e n t i a l .  Valuesof the barrier position below 
this zero were not considered; if included, they will lead to the type of phase behaviour 
already discussed by Kendrick el a1 (1988). In the work presented above, the interest 
has been focused on the competition between the contributions to the DLVO potential 
and their relationship to the criteria of phase stability. 

We have been particularly interested in the role played by the primary minimum of 
the DLVO potential and have presented results, based on the RPA, in which this minimum 
has been modelled by the SHS reference system. Our results suggest that the line drawn 
by VH, indicating the onset of irreversible coagulation according to a phenomenological 
criterion, may be an approximation to the flat region which develops in the coexistence 
curve of the system under study. 

However, we have not attempted to determine criteria to find the lowest value of K 
for which we have a flat region in the coexistence curve, for the following reasons. First, 
as stated in section 1, the RPA predicts the correct qualitative trends but it is not 
sufficiently reliable for quantitative calculations. In particular, the RPA predicts critical 
temperatures that arc too high. Second, there are difficulties in the splitting of the 
potential with any other thermodynamic perturbation theory when we use a SHS ref- 
erence system. We are currently studying ways of overcoming this problem. Finally, as 
referred to above, there are also ddficultieswith the pathological nature of the SHS, so 
much so that there is only a narrow window (about 10-15% of the physically allowed 
values of the stickiness parameter) for which we are able to obtain meaningful results. 

Summing up, we have qualitatively shown that it is possible, in principle, to establish 
welldefined criteriafor the phase stability of chargedcolloidaldispersions withina single 
thermodynamic perturbation theory by appropriately choosing a reference system that 
mimics the gross features of the interaction potential. 
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